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Abstract
We consider the 1D motion of an over-damped Brownian particle in a general
potential in the low temperature limit. We derive an explicit expression for
the probability distribution for the heat transferred to the particle. We find
that the local minima in the potential yield divergent side bands in the heat
distribution in addition to the divergent central peak. The positions of the
bands are determined by the potential gaps. We, moreover, determine the tails
of the heat distribution.

PACS numbers: 05.40.−a, 05.70.Ln

(Some figures in this article are in colour only in the electronic version)

There is a strong current interest in the thermodynamics and statistical mechanics of
small fluctuating systems in contact with a heat reservoir and driven by external forces. The
strong interest stems from the recent possibility of the direct manipulation of nano systems
and biomolecules. These techniques permit direct experimental access to the probability
distribution functions (PDFs) for the work or for the heat exchanged with the environment
[1–9]. These techniques have also opened the way to the experimental verification of the
fluctuation theorems, which relate the probability of observing entropy-generating trajectories
with that of observing entropy-consuming trajectories [10–27]. Interestingly, the unfolding
of biopolymers [1, 2, 28] or the motion of colloidal particles in optical tweezers [4–9] can
be described to a large extent as a one-dimensional Brownian motion. However, from a
theoretical point of view the time evolution of the work and heat PDFs for a Brownian particle
in an external potential is governed by a complex partial differential equation [6, 27] whose
explicit solution is available only for simple potentials. It is therefore of interest to extract
some general properties regarding the motion of a Brownian particle.

In the present paper we consider a Brownian particle in a general static potential. We
show that an explicit asymptotic expression for the heat PDF can be obtained in the low
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temperature–long time limit. As a starting point we consider the stochastic motion in 1D of
an overdamped Brownian particle in the general static potential U(x). This simplification is
justified by the fact that nano systems and biomolecules in aqueous solutions typically behave
as overdamped systems. Within a conventional Langevin description the equation description
of motion is given by

dx

dt
= −∂U

∂x
+ ξ, (1)

where the noise characterizing the fluctuations imparted by the heat bath at a temperature T is
correlated according to

〈ξ(t)ξ(0)〉 = 2T δ(t). (2)

We are setting kB = 1 and the kinetic coefficient � = 1; note that for the motion in a viscous
medium we have according to Stokes theorem � = 1/6πηR, where R is the radius of the
particle and η the viscosity.

The kinetics of a particle moving in a general potential is complex. On the one hand, the
particle can be trapped in local minima on a time scale given by the inverse spring constant
in a local harmonic approximation; on the other hand, the particle can also make a Kramers
transition across potential barriers separating local minima. These transitions are typically
dominated by the Arrhenius factor exp(−�U/T ), where �U is the potential barrier. However,
in the long time limit, i.e. at times larger than the largest relaxation time, the particle samples
the full potential profile and the stationary distribution is given by the Boltzmann expression

P0(x) = e−βU(x)

Z(β)
, (3)

where Z(β) is the partition function

Z(β) =
∫

dx e−βU(x), (4)

and β = 1/T (the inverse temperature).
At low temperature, β → ∞, a steepest descent argument applied to the partition function

(4) implies that only the local minima in U contribute. The particle is trapped in the local
minima and only rarely makes Kramers transitions to neighboring wells. Expanding the
potential to quadratic order about the well at a position xi with gap Ui and second derivative ki

(spring constant) we obtain the local contribution

U(x) ∼ Ui + 1
2ki(x − xi)

2, (5)

and for the partition function, performing the Gaussian integral,
∫

dx exp(−αx2) = √
π/α,

Z(β) ∼
∑

i

(
2π

βki

)1/2

e−βUi . (6)

In the present paper we wish to focus on the distribution of the heat exchange Q(t) with
the reservoir in the long time–low temperature limit. For the Brownian motion of a particle
in a potential the heat Q(t) sampled up to time t is a fluctuating quantity characterized by a
time-dependent probability distribution P(Q, t). In the long time limit the distribution P(Q, t)
approaches a stationary distribution P0(Q) which we proceed to analyze.

The heat delivered by the heat bath in the time span t is in general given by expression
[6, 22, 29]

Q(t) =
∫ x(t)

x0

dx
dU

dx
=

∫ t

0
dt ′

(
dU

dx

)
x(t ′)

dx(t ′)
dt ′

. (7)
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The first integral in (7) is a stochastic integral [30] and thus one has to choose an integration
scheme. By choosing the Stratonovich integration scheme the second equality in (7) holds,
otherwise, additional boundary terms appear on its rhs, see, e.g. [31]. In (7), one simply
samples the energy change associated with the fluctuating position of the particle; x0 is the
initial position and x(t) the position at time t. The expression (7) can, of course, in principle
be evaluated by the insertion of (1). However, this more cumbersome procedure can be
circumvented by noting that simple quadrature yields

Q(t) = U(x(t)) − U(x0). (8)

Note that this result only holds for a static potential. In the case of a prescribed dynamic
potential doing work on the particle according to a given protocol, the expression (8) does not
hold and one is faced with the more intractable problem of handling (7).

Introducing the characteristic function the heat distribution is given by

P(Q, t) =
∫

dp

2π
eipQ〈e−ipQ(t)〉, (9)

where the average 〈· · ·〉 in the characteristic function is over both the initial position x0 and the
final position x(t). At t = 0 the heat distribution P(Q, 0) = δ(Q). After a transient period
of order the inverse spring constants and Kramers rates the heat distribution function becomes
stationary. The particle is at all times in thermal equilibrium characterized by the Boltzmann
distribution (3). Accordingly, averaging at long times over x0 and x(∞) using (3) we obtain
for the characteristic function

〈e−ipQ(∞)〉 =
∫

dx0 dxP0(x0)P0(x) e−ipU(x)+ipU(x0). (10)

Finally, extending the partition function (4) to complex inverse temperature we obtain in a
compact manner a general long time expression for the characteristic function

〈e−ipQ(∞)〉 = |Z(β + ip)|2
Z(β)2

; (11)

note that 〈e−ipQ(∞)〉p=0 = 1 ensuring the normalization condition
∫

dQP(Q,∞) = 1.
At low temperature the partition function predominantly samples the local minima in

U and we obtain inserting the asymptotic expression (6) generalized to complex inverse
temperature the low temperature–long time expression for the characteristic function

〈e−ipQ(∞)〉 =
[

β2

β2 + p2

]1/2 ∑
ij (kikj )

−1/2 exp(−β(Ui + Uj)) exp(−ip(Ui − Uj))∑
nm(knkm)−1/2 exp(−β(Un + Um))

. (12)

First, we note again that 〈e−ipQ(∞)〉p=0 = 1 yielding the normalization of P(Q,∞), moreover,
the phase factors exp(−ip(Ui − Uj)) can according to (9) be absorbed in a shift of Q. The
interesting aspect resides in the prefactor (β2 +p2)−1/2 which has branch points in the complex
p plane at p = ± iβ.

By inspection of (9) and (12) we note that for small Q relative to Ui −Uj the integral in (9)
is logarithmically divergent for large p since (β2 + p2)−1/2 ∼ p−1, implying a logarithmically
divergent contribution to P(Q,∞) ≡ P0(Q), i.e. P0(Q) ∼ − log |Q − (Ui − Uj)|. For large
|Q|, i.e. the tails of the distribution P0(Q), we sample the small p region in (9) and (12), and
closing the contour in the upper half plane (lower half plane) for Q > 0 (Q < 0) and picking
up the branch point contribution p = iβ (p = −iβ) we obtain the dominant exponential tails
P0(Q) ∼ exp(−β|Q|).

However, using the well-known identity [32]∫ ∞

0
dx

cos ax

(b2 + x2)1/2
= K0(ab), (13)
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Figure 1. Double well potential with gap U (arbitrary units).

where K0(x) is a Bessel function of the second kind, it is easy to derive an explicit expression
for the heat distribution function. We have

P0(Q) = β

π

∑
ij (kikj )

−1/2 e−β(Ui+Uj )K0(β|Q − (Ui − Uj)|)∑
nm(knkm)−1/2 e−β(Un+Um)

. (14)

Using the identity
∫

dxK0(x) = π following from (13) we confirm the normalization condition∫
dQP0(Q) = 1. For small argument K0(x) ∼ − log(x) and we obtain for Q ∼ Ui − Uj

P0(Q) ≈ −β

π

(kikj )
−1/2 e−β(Ui+Uj )∑

nm(knkm)−1/2 e−β(Un+Um)
log |Q − (Ui − Uj)|, (15)

showing that P0(Q) exhibits a multi-band structure of log divergent peaks at Q = Ui − Uj in
agreement with our qualitative discussion. For large argument K0(x) ∼ (π/2x)1/2 exp(−x),

and we obtain the exponential tails P0(Q) ∼ Q−1/2 exp(−β|Q|), including the prefactor
Q−1/2.

Equation (14) is the main result of this paper. Now we apply (14) to a specific case. In the
case of the double-well potential depicted in figure 1 with two minima, the second minimum
with gap U, we obtain from (12) the characteristic function

〈e−ipQ(∞)〉 =
[

β2

β2 + p2

]1/2
[

1 + 2

(
k1

k2

)1/2

e−βU (cos pU − 1)

]
, (16)

yielding the heat distribution function

P0(Q) = β

π

[
1 − 2

(
k1

k2

)1/2

e−βU

]
K0(β|Q|)

+
β

π

(
k1

k2

)1/2

e−βU (K0(β|Q − U |) + K0(β|Q + U |)). (17)
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Figure 2. Heat distribution function pertaining to a double well potential with gap U. The spectrum
shows a central peak at Q = 0 and two side bands at Q = ±U (arbitrary units).

In figure 2 we have shown the heat distribution function P0(Q) as a function of heat
transfer Q for the parameter values k1 = k2 = 1, β = 1 and U = 1.5.

The interpretation of the log divergent multi-band structure in the heat distribution function
in the low temperature–long time limit is easy. From the work of Imparato et al [6], see also
the work of van Zon et al [23], it is well-known that the heat distribution function for a static
harmonic potential is given by the Bessel function K0(β|Q|) exhibiting a log divergence at
zero heat transfer Q ∼ 0; for large Q the distribution falls off according to the Boltzmann
factor exp(−β|Q|). For a general potential possessing several minima these features seem
to persist. Each minima in the potential acts like a local reservoir where the particle at low
temperature can be trapped for a long time before making a Kramers transition to another
well. Since the transfer between the potential well with gap Ui to the well with gap Uj involves
the energy difference Ui − Uj , the divergent band appear at heat transfer Q = Ui − Uj . It
also follows from (15) that the contributions are weighted with the corresponding Boltzmann
factors.

In the case of the double well potential depicted in figure 1 with a well with zero gap and
a well with gap U the discussion is particularly transparent. At low temperature the particle
is for most of the time trapped in the zero gap well yielding the log divergent behavior for
zero heat transfer. Occasionally, the particle makes a Kramers transition to the well with gap
U and becomes trapped yielding log divergent peaks at Q ∼ ±U . The side bands originating
from the well with the gap are down by the Boltzmann factor exp(−βU). The sum rule
(normalization)

∫
dQP0(q) = 1 implies that the total integrated strength is constant. We also

note that for the case of a vanishing gap U = 0, i.e. for two gapless wells, we recover the
result P0(Q) = (β/π)K0(β|Q|), independent of the spring constant [6].

In order to model a double well potential in more detail we have used the fourth-order
polynomial

U(x) = dx4 + 4Ux3 +

(
9U 2

2d
− d

2

)
x2, (18)
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Figure 3. Analytical solution (17) (full line), and heat distribution (histogram) as obtained by
numerical solution of the Langevin equation (105 independent trajectories, with t0 = 0, t = 10),
for the potential in (18) with d = 15, U = 2.5, β = 1. Inset: heat distribution in a log-linear scale.
Dashed lines: |Q|−3/4 exp(−β|Q|).

which has a gap U, minima located at x = −(3U/2d) ± 1/2 and spring constants
k = 2(d ± 3U). Choosing β = 1, U = 2.5 and d = 15 we have in figure 3 depicted
the analytical expression (17) together with a numerical solution of the Langevin equation
(105 independent trajectories, with t0 = 0, t = 10).

Finally, we derive a general expression for the large |Q| behavior of the heat distribution
function P0(Q). For large |Q|, corresponding to large heat transfer to the heat bath, we sample
the wings of the potential. Considering a general potential U behaving like U ≈ Axn, for
large |x|, and n even, we obtain for the heat distribution function

P0(Q) ∝
∫

dx1 dx2 e−β(U1+U2)δ(|Q| − U1 + U2), (19)

where U1 = U(x1) and U2 = U(x2). For large |Q| inserting U ≈ Axn and introducing polar
coordinates x1 = r cos φ, x2 = r sin φ we have, using the delta function to eliminate r,

P0(Q) ∝
∫

r dr dφ e−β|Q|F(φ)δ(|Q| − Arn(cosn φ − sinn φ)), (20)

where F(φ) = (1 + tann φ)/(1 − tann φ). For large Q the integral is dominated by the minima
of F for φ = 0 and φ = π . Expanding about the minima to second order, F ≈ 1 − 2(δφ)n,
performing the Gaussian integrals and the r-integration over the delta function in (20) we
obtain the distribution function for large |Q|

P0(Q) ∝ |Q|1/n−1 e−β|Q|. (21)

6
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This is a general result. Here e−β|Q| is a Boltzmann factor associated with the heat transfer
Q whereas the prefactor |Q|1/n−1 is a ‘density of states’ contribution. For n = 2 we
obtain the previous Bessel result, P0(Q) ≈ |Q|−1/2 exp(−β|Q|), pertaining to the harmonic
approximation, and for n = 4, corresponding to the double well model potential (18), we have
P0(Q) ≈ |Q|−3/4 exp(−β|Q|). In the inset in figure 3 we have depicted the heat distribution
in a log-linear scale. The dashed line corresponds to P0(Q) ∝ |Q|−3/4 exp(−β|Q|).

Regarding the numerical simulation of the double well heat distribution and the
comparison with the analytical result, we note that the divergent peak structure in (17) arises
from a saddle point analysis only valid in the vicinity of the peaks whereas the simulation
samples the whole potential; given the statistics of the simulation we believe that the agreement
is good. We, moreover, find a good agreement with the expression (21) for the tails of the
distribution (the dashed line in the inset in figure 3).

In this paper we have generalized the result for the heat distribution function for a harmonic
potential to the case of a general static potential with several minima in the long time–low
temperature limit. Our analysis shows that the gap structure of the potential wells gives rise
to a multi-band structure of log divergent peaks in the heat distribution function. We have,
moreover, derived a general result for the tails of the heat distribution function.
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